SELECTIVITY OF NUCLEOPHILIC ADDITION TO AND SUBSTITUTION AT ISOTHIOCYANATOCARBONYL GROUP. REACTIONS OF 4-PENTINOYL- AND 2-(2-PROPINYL)-4-PENTINOYL ISOTHIOCYANATE WITH AMINES AND METHANOL

Peter Kutschy, Pavol Kristian, Milan Dzurilla, Dušan Koščík and Róbert NÁdaSkay
Department of Organic Chemistry and Biochemistry, Faculty of Natural Sciences, P. J. Šafárik University, 04167 Košice

Received February 25th, 1986

Abstract

4-Pentinoyl isothiocyanate reacts with primary and secondary amines by either nucleophilic addition to $\mathrm{N}=\mathrm{C}=\mathrm{S}$ group to yield the corresponding thioureas, or a nucleophilic substitution at the carbonyl group to give 4 -pentinoic acid amides. The less nucleophilic diphenylamine reacts selectively to afford the product of nucleophilic addition only. 2-(2-Propinyl)-4-pentinoyl isothiocyanate, having a sterically hindered carbonyl group, furnished with primary amines a mixture of amides and thioureas, whereas the bulkier secondary amines react selectively to form thioureas only. Both isothiocyanates afford with methanol as a nucleophile exclusively the corresponding O-methyl monothiocarbamates.

Properties of addition products of acyl isothiocyanates have recently been intensively studied, the interest being mostly focussed to N -acylthioureas, which in addition to their biological activity ${ }^{1}$ are also suitable synthons for the synsthesis of heterocyles ${ }^{2-5}$. Aroyl isothiocyanates ${ }^{1,4,6-8}$, propenoyl isothiocyanates ${ }^{3,9,10}$ and 4-pentenoyl isothiocyanate ${ }^{11}$ react with amines and alcohols via a nucleophilic addition to NCS group to afford substituted thioureas and O -alkyl monothiocarbamates. Acyl isothiocyanates react with sodium 3 -methyl-1-butin-3-ol ${ }^{12}$, thiamine ${ }^{13}$, 3-amino-1,2,4triazole, 5 -aminotetrazole, and 2 -aminobenzimidazole ${ }^{14.15}$ by a nucleophilic substitution at carbonyl carbon of the $\mathrm{O}=\mathrm{C}-\mathrm{N}=\mathrm{C}=\mathrm{S}$ group to furnish the corresponding esters or amides. On the other hand, 3-chloro-3-phenylpropenoyl isothiocyanate treated with methylamine gives both the substitution and addition products ${ }^{10}$. Although only little attention has been paid to investigation of selectivity of nucleophilic addition and substitution, it is generally presumed that more basic amines, more polar solvents and higher temperature favour substitution ${ }^{16,17}$.

This paper concerns the reaction of 4-pentinoyl isothiocyanate (VII) and 2-(2-pro-pinyl)-4-pentinoyl isothiocyanate (VIII) with primary and secondary amines and methanol. The given system proved suitable for the investigation of the nucleophilic addition to the displacement rate at the CONCS grouping with respect to the pro-
perties of the nucleophile and the structure of the isothiocyanate. Attention has also been paid to the reactivity of addition products; these results were published elsewhere^{18}. Isothiocyanates VII and VIII were obtained from the corresponding carboxylic acids $I I I$ and $I V$, the preparation of which is described in several papers ${ }^{19-21}$ (Scheme 1). Yield of the mixture of carboxylic acids I and $I I$ with the prevailing 3-butinc-

In formulae $1, I I, V, V I I: R^{\prime}=H ; \quad I I, V, V I, V I I I: R^{\prime}=H C \equiv \mathrm{CCH}_{2}$
Scheme 1
-1,1-dicarboxylic acid is c. 50% per the diethyl malonate. No reliable results were obtained by reproducing the procedures described in literature and therefore, a new more effective preparation of the above-mentioned acids was elaborated involving the phase-transfer catalysis in the presence of triethylbenzylammonium chloride in aqueous sodium hydroxide, the organic phase being formed by the starting material. This method directly afforded the mixture of mono and dialkyldicarboxylic acids I and $I I$ in a $1: 1$ ratio, whereby the reaction time was reduced from 20 to 4 h and the yield was raised to $60-70 \%$. The mixture of acids $I I I$ and $I V$ obtained by decarboxylation of acids I and $I I$ could be well separated in form of chlorides V and $V I$ by fractional distillation. Reaction with lead thiocyanate in benzene leads to 4-pentinoyl isothiocyanate (VII) and 2-(2-propinyl)-4-pentinoyl isothiocyanate (VIII) in 70-80\% yields. These compounds were identified by characteristic absorption bands $v(\mathrm{~N}=$ $=\mathrm{C}=\mathrm{S}$) at 1960 and $1955 \mathrm{~cm}^{-1}$, respectively. Treatment of the isothiocyanate VII with an equimolar amount of benzylamine in benzene for 90 min and monitoring the mixture by thin-layer chromatography showed the presence of the starting material, whilst benzylamine was not detected. A precipitate separating from the solution was identified by elemental analysis and IR spectrum $\left(v(S-C=N) 2040 \mathrm{~cm}^{-1}\right)$ as benzylammonium thiocyanate $(X X V)$. The filtrate was evaporated to dryness and chromatographed over a silica gel column to give N -benzyl- N^{\prime}-(4-pentinoyl)-thiourea
($I X$) and 4-pentinoic acid N -benzylamide (XIX). The IR spectra of both substances disclosed characteristic $v(\equiv \mathrm{C}-\mathrm{H})$ absorption bands at $3310 \mathrm{~cm}^{-1}$. The thiourea derivative reveals an intense $v($ NHCS $)$ band at $1520 \mathrm{~cm}^{-1}$, which is absent in the spectrum of the amide $X I X$. These findings evidence that two parallel reactions are taking place when reacting benzylamine with 4-pentinoyl isothiocyanate (VII): a) a nucleophilic addition of benzylamine to $\mathrm{N}=\mathrm{C}$ bond of the $\mathrm{N}=\mathrm{C}=\mathrm{S}$ grouping to form thiourea $I X, b$) a nucleophilic substitution of the NCS group due to an attack of benzylamine to carbonyl carbon under formation of the amide $X I X$ and hydrogen thiocyanate. The latter reacts with the so far not reacted benzylamine to yield thiocyanate $X X V$. Considering the afore-mentioned findings, reactions of isothiocyanates $V I I$ and VIII with amines were carried out with a 100%-excess of the nucleophile (Scheme 2, Table I). Reactions of isothiocyanates VII and VIII with benzylamine,

morpholine, and diphenylamine in acetone or hexane at $-80^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$ showed that no change in the ratio of products occured. Data listed in Table I let us presume that selectivity of this reaction, i.e. tendency of the nucleophile to attack the isothiocyanate or carbonyl carbon of the CONCS group first of all depends on the structure of the alkylacyl residue and properties of the amine used. With 4-pentinoyl isothiocyanate (VII) addition leading to thiourea $X I$ is preferred when employing the less basic diphenylamine. Other amines undergo also a parallel substitution reaction leading to 4 -pentinoic acid amides $X I X-X X I I$ and corresponding ammonium thiocyanates $X X V-X X V I I I$. A more complicated is the reaction course with 2-(2-propi-nyl)-4-pentinoyl isothiocyanate: the substitution reaction takes place with primary amines only (benzylamine, aniline). Secondary amines, as well as more basic amines than aniline (piperidine, morpholine) selectively afford addition products to the NCS group. These findings indicate the substantial influence of a steric factor in addition to the alkylacyl substitution of isothiocyanate VIII and the nature of amine used.
Table I
Characteristic data of products $I X-X X V$ III

Compound	R^{1}	R^{2}	R^{3}	Formula ($M_{\mathbf{r}}$)	$\begin{aligned} & \text { M.p., }{ }^{\circ} \mathrm{C} \\ & \text { (solvent }{ }^{a} \text {) } \end{aligned}$	Yield \%	Calculated/found		
							\% C	\% H	\% N
IX	H	H	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$\underset{(246 \cdot 2)}{\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}}$	$97 \cdot 5-99$ (M)	20	$\begin{aligned} & 63 \cdot 40 \\ & 63 \cdot 52 \end{aligned}$	$\begin{aligned} & 5.73 \\ & 5.91 \end{aligned}$	$\begin{aligned} & 11.37 \\ & 11.59 \end{aligned}$
X	H	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\underset{(232 \cdot 2)}{\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}}$	$134 \cdot 5-135 \cdot 5$ (M)	26	$\begin{aligned} & 62 \cdot 04 \\ & 62 \cdot 30 \end{aligned}$	$\begin{aligned} & 5 \cdot 21 \\ & 5 \cdot 39 \end{aligned}$	$\begin{aligned} & 12.06 \\ & 11.81 \end{aligned}$
XI	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\underset{(308 \cdot 3)}{\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}}$	$\begin{array}{r} 115-116 \\ (\mathrm{~B}-\mathrm{H}) \end{array}$	75	$\begin{aligned} & 70 \cdot 13 \\ & 70 \cdot 22 \end{aligned}$	$\begin{aligned} & 5 \cdot 23 \\ & 5 \cdot 44 \end{aligned}$	$\begin{aligned} & 9 \cdot 09 \\ & 9 \cdot 12 \end{aligned}$
XII	H			$\underset{(224 \cdot 3)}{\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}}$	$\begin{array}{r} 142-144 \\ (\mathrm{~B}-\mathrm{H}) \end{array}$	19	$\begin{aligned} & 58 \cdot 82 \\ & 58.76 \end{aligned}$	$\begin{aligned} & 7 \cdot 19 \\ & 7 \cdot 29 \end{aligned}$	$\begin{aligned} & 12.49 \\ & 12.53 \end{aligned}$
XIII	H		$\left(\mathrm{CH}_{2}\right)_{2}$	$\underset{(226 \cdot 3)}{\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}}$	$\begin{array}{r} 137-139 \\ (\mathrm{~B}-\mathrm{H}) \end{array}$	18	$\begin{aligned} & 53.08 \\ & 52.82 \end{aligned}$	$\begin{aligned} & 6 \cdot 24 \\ & 6 \cdot 03 \end{aligned}$	$\begin{aligned} & 12 \cdot 38 \\ & 12 \cdot 42 \end{aligned}$
XIV	$\mathrm{HC} \equiv \mathrm{CCH}_{2}$	H	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$\underset{(284 \cdot 3)}{\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}}$	$\begin{gathered} 68-70 \\ (B-H) \end{gathered}$	38	$\begin{aligned} & 67 \cdot 60 \\ & 67 \cdot 42 \end{aligned}$	$\begin{aligned} & 5 \cdot 67 \\ & 5 \cdot 73 \end{aligned}$	$\begin{aligned} & 9 \cdot 85 \\ & 9 \cdot 66 \end{aligned}$
$X V$	$\mathrm{HC} \equiv \mathrm{CCH}_{2}$	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\underset{(270 \cdot 4)}{\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}}$	$135-136$ (B)	34	$\begin{aligned} & 66 \cdot 64 \\ & 66 \cdot 42 \end{aligned}$	$\begin{aligned} & 5.22 \\ & 5.42 \end{aligned}$	$\begin{aligned} & 10 \cdot 36 \\ & 10 \cdot 63 \end{aligned}$
XVI	$\mathrm{HC} \equiv \mathrm{CCH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\underset{(346 \cdot 5)}{\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}}$	$\begin{gathered} 105 \cdot 5-107 \cdot 5 \\ (\mathrm{~B}-\mathrm{H}) \end{gathered}$	80	$\begin{aligned} & 72 \cdot 80 \\ & 72 \cdot 59 \end{aligned}$	$\begin{aligned} & 5 \cdot 24 \\ & 5.52 \end{aligned}$	$\begin{aligned} & 8.08 \\ & 7.84 \end{aligned}$
XVII	$\mathrm{HC} \equiv \mathrm{CCH}_{2}$			$\underset{(262 \cdot 4)}{\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}}$	$\begin{array}{r} 115-117 \\ (\mathrm{~B}-\mathrm{H}) \end{array}$	62	$\begin{aligned} & 64 \cdot 08 \\ & 64 \cdot 21 \end{aligned}$	$\begin{aligned} & 6.91 \\ & 6.99 \end{aligned}$	$\begin{aligned} & 10 \cdot 68 \\ & 10 \cdot 86 \end{aligned}$

XVIII	$\mathrm{HC} \equiv \mathrm{CCH}_{2}$		$\left(\mathrm{CH}_{2}\right)_{2}$	$\underset{(264 \cdot 3)}{\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}} \mathrm{~S}$	$\begin{array}{r} 143-145 \\ (\mathrm{C}-\mathrm{P}) \end{array}$	93	$\begin{aligned} & 59 \cdot 08 \\ & 59 \cdot 32 \end{aligned}$	$\begin{aligned} & 6.10 \\ & 6.03 \end{aligned}$	$\begin{aligned} & 10 \cdot 65 \\ & 10 \cdot 66 \end{aligned}$
XIX	H	H	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$\xrightarrow[(187 \cdot 2)]{\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}}$	$\begin{gathered} 67-68 \\ (\mathrm{C}-\mathrm{P}) \end{gathered}$	74	$\begin{aligned} & 76 \cdot 99 \\ & 77 \cdot 21 \end{aligned}$	$\begin{aligned} & 7.00 \\ & 6.96 \end{aligned}$	$\begin{aligned} & 7.48 \\ & 7.54 \end{aligned}$
$X X$	H	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{gathered} \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO} \\ (173 \cdot 2) \end{gathered}$	$\begin{gathered} 128-129 \\ \text { (B) } \end{gathered}$	72	$\begin{aligned} & 76 \cdot 28 \\ & 75 \cdot 99 \end{aligned}$	$\begin{aligned} & 6.40 \\ & 6.42 \end{aligned}$	$\begin{aligned} & 8.09 \\ & 8.19 \end{aligned}$
XXI	H			$\begin{gathered} \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO} \\ (165 \cdot 2) \end{gathered}$	$\begin{gathered} 44-45 \\ (\mathrm{C}-\mathrm{P}) \end{gathered}$	62	$\begin{aligned} & 72 \cdot 70 \\ & 72 \cdot 48 \end{aligned}$	$\begin{aligned} & 9 \cdot 15 \\ & 9 \cdot 31 \end{aligned}$	8.47 8.55
XXII	H		$\left(\mathrm{CH}_{2}\right)_{2}$	$\begin{gathered} \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{2} \\ (167 \cdot 2) \end{gathered}$	$81-82 \cdot 5$ (B)	62	$\begin{aligned} & 64 \cdot 64 \\ & 64 \cdot 73 \end{aligned}$	$\begin{aligned} & 7.48 \\ & 7.92 \end{aligned}$	$\begin{aligned} & 8.38 \\ & 8.23 \end{aligned}$
XXIII	$\mathrm{HC} \equiv \mathrm{CCH}_{2}$	H	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$\underset{(225 \cdot 3)}{\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}}$	$\begin{gathered} 102 \cdot 5-103 \cdot 5 \\ (\mathrm{~B}-\mathrm{H}) \end{gathered}$	56	$\begin{aligned} & 79 \cdot 97 \\ & 80 \cdot 03 \end{aligned}$	$\begin{aligned} & 6.71 \\ & 7.83 \end{aligned}$	$\begin{aligned} & 6.22 \\ & 6.02 \end{aligned}$
XXIV	$\mathrm{HC} \equiv \mathrm{CCH}_{2}$	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\underset{\substack{\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO} \\(211 \cdot 3)}}{ }$	$146-148$ (C)	54	$\begin{aligned} & 79 \cdot 22 \\ & 79 \cdot 51 \end{aligned}$	$\begin{aligned} & 6.65 \\ & 6.40 \end{aligned}$	$\begin{aligned} & 6 \cdot 60 \\ & 6 \cdot 31 \end{aligned}$
$X X V$	-	H	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{array}{r} \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S} \\ (166 \cdot 3) \end{array}$	$\begin{gathered} 85-87 \\ \text { (B) } \end{gathered}$	$\begin{aligned} & 54^{b} \\ & 35^{c} \end{aligned}$	$\begin{aligned} & 57.78 \\ & 57.59 \end{aligned}$	6.06 6.23	$\begin{aligned} & 16 \cdot 85 \\ & 16 \cdot 69 \end{aligned}$
XXVI	\cdots	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\begin{gathered} \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S} \\ (152 \cdot 2) \end{gathered}$	$\begin{gathered} 83-85 \\ \text { (B) } \end{gathered}$	$\begin{aligned} & 18^{b} \\ & 14^{c} \end{aligned}$	$\begin{aligned} & 55 \cdot 23 \\ & 55 \cdot 51 \end{aligned}$	$5 \cdot 30$	$\begin{aligned} & 18 \cdot 40 \\ & 18 \cdot 12 \end{aligned}$
XXVII	-			$\underset{(134 \cdot 2)}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}}$	$92-94$ (B)	$48^{\text {b }}$	$\begin{aligned} & 53 \cdot 65 \\ & 53 \cdot 51 \end{aligned}$	$\begin{aligned} & 8.26 \\ & 8.39 \end{aligned}$	$\begin{aligned} & 20 \cdot 86 \\ & 20 \cdot 70 \end{aligned}$
XXVIII	-		$\left(\mathrm{CH}_{2}\right)_{2}$	$\underset{(136 \cdot 2)}{\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}}$	$117-118$ (B)	$40^{\text {b }}$	$\begin{aligned} & 44 \cdot 08 \\ & 44 \cdot 33 \end{aligned}$	7.40 7.35	

Therefore, secondary amines with a bulkier amino group react with the NSC group of the isothiocyanate VIII only. Different spatial conditions for the nucleophilic substitution at carbonyl group of isothiocyanates VII and VIII are accordingly involved even with primary amines, as shown by the yield ratio of amide to thiourea, which is greater with 4-pentinoyl isothiocyanate than with 2-(2-propinyl)-4-pentinoyl isothiocyanate (Table I).

Isothiocyanates VII and VIII were reacted with methanol for comparison. Methanol is a weaker nucleophile than amines and the only products from this experiment were the corresponding O-methyl monothiocarbamic acids $X X I X$ and $X X X$. No nucleophilic displacement leading to methyl carboxylates was observed.

EXPERIMENTAL

The IR spectra were measured with an IR-75 (Zeiss, Jena) spectrophotometer, the ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Tesla BS 487 A spectrometer operating at 80 MHz tetramethylsilane being the internal reference; hexamethyldisiloxane was the standard for measurements in ${ }^{2} \mathrm{H}_{2} \mathrm{O}$. The reaction course was monitored by thin-layer chromatography on Silufol (Kavalier, Czechoslovakia) sheets.

4-Pentinoic (III) and 2-(2-Propinyl)-4-pentinoic (IV) Acids
Diethyl malonate ($57.6 \mathrm{~g}, 0.36 \mathrm{~mol}$) was rapidly added to a well stirred solution of 33%-sodium hydroxide ($264 \mathrm{~g}, 6.6 \mathrm{~mol}$) in water (528 ml) and triethylbenzylammonium chloride (29.4 g , 0.132 mol). Thereafter 1-bromo-2-propene ($42.8 \mathrm{~g}, 0.36 \mathrm{~mol}$) was added and the mixture was stirred at room temperature for 2.5 h . The mixture was diluted with water (750 ml), the unreacted starting material was extracted with ether (200 ml), the aqueous layer was cooled with ice and acidified with hydrochloric acid to $\mathrm{pH} \sim 1$ (c. 500 ml). This solution was extracted with ether ($5 \times 200 \mathrm{ml}$), the organic layer was dried with magnesium sulfate, ether was evaporated and the mixture of dicarboxylic acids I and $I I\left(40-45 \mathrm{~g}, 60-70 \%\right.$) was heated to $160-170^{\circ} \mathrm{C}$. Fractional distillation under reduced pressure afforded 4-pentinoic acid (III, 11 g) and 2-(2-propinyl)-4-pentinoic acid ($I V, 13 \mathrm{~g}$). Without fractionation the yield of $I I I$ and $I V$ in a $1: 1$ ratio was 25 g .

4-Pentinoic acid (III): m.p. $57^{\circ} \mathrm{C}$ light petroleum, $-20^{\circ} \mathrm{C}$, b.p. $102^{\circ} \mathrm{C} / 2 \cdot 3 \mathrm{kPa}$. IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1710(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C} \equiv \mathrm{C}), 2400-3200(\mathrm{COOH}), 3312(\equiv \mathrm{C}-\mathrm{H}), 3515$ $(\mathrm{COOH}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta, \operatorname{ppm}: 1.98(\mathrm{t}, 1 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \equiv \mathrm{CH}), 2.56(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 11 \cdot 15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. This compound is identical with the specimen ${ }^{19-21}$.

2-(2-Propinyl)-4-pentinoic acid (IV): b.p. $135 \mathrm{C} / 2 \cdot 3 \mathrm{kPa}$. IR spectrum (CHCl_{3}), $\mathrm{cm}^{-1}: 1720$ $(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C} \equiv \mathrm{C}), 2200-3400(\mathrm{COOH}), 3312(\equiv \mathrm{C}-\mathrm{H}), 3500(\mathrm{COOH}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta$, ppm: $2.04(\mathrm{t}, 2 \mathrm{H}, J=3 \mathrm{~Hz},=\mathrm{CH}), 2.69\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 11.38(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH})$. This compound is identical with the specimen ${ }^{19-21}$.

4-Pentinoyl Chloride (V) and 2-(2-Propinyl)-4-pentinoyl Chloride (FI)
Acid III or acid $I V$ or the $1: 1$ mixture of them (50 mmol , for the mixture the average molecular mass was considered) was dissolved in thionyl chloride (0.15 mol) and left to stand overnight at room temperature and exclusion of moisture. The mixture was fractionated under reduced pressure.

4-Pentinoyl chloride (V): yield 60%, b.p. $46-48^{\circ} \mathrm{C} / 2 \cdot 5 \mathrm{kPa}$. IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}$: $!785(\mathrm{C}=\mathrm{O}), 2125(\mathrm{C} \equiv \mathrm{C}), 3320(\equiv \mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HC}_{i_{3}}\right), \delta, \mathrm{ppm}: 2.04(\mathrm{t}$, $1 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2 \cdot 56\left(\mathrm{~m}, 2 \mathrm{H}, \equiv \mathrm{CCH}_{2}\right), 3 \cdot 12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)$. The compound is identical with the specimen ${ }^{22}$.

2-(2-Propinyl)-4-pentinoyl cl loride (VI): yield 60%, b.p. $78^{\circ} \mathrm{C} / 2.5 \mathrm{kPa}$. IR spectrum (CHCl_{3}), $\mathrm{cm}^{-1}: 1770(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C} \equiv \mathrm{C}), 3310(\equiv \mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta$, ppm: $2 \cdot 10$ $(\mathrm{t}, 2 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2 \cdot 75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 3 \cdot 13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$.

4-Pentinoyl Isothiocyanate (VII) and 2-(2-Propinyl)-4-pentinoyl Isothiocyanate (VIII)
A stirred mixture of acyl chloride $I V$ or $V I(20 \mathrm{mmol})$ and lead(II) thiocyanate (15 mmol) in benzene (30 ml) was heated in 1 h a oil-bath kept at $90^{\circ} \mathrm{C}$, filtered with charccal, the solvent was distilled off and the residue was fractionated under diminished pressure.

4-Pentinoyl isothiocyarate (VII): yield 75%, b.p. $78-81^{\circ} \mathrm{C} / 2 \cdot 1 \mathrm{kPa}$. For $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NOS}(139 \cdot 2)$ calculated: $51.77 \% \mathrm{C}, 3.62 \% \mathrm{H}, 10.66 \% \mathrm{~N}$; found: $51.60 \% \mathrm{C}, 3.75 \% \mathrm{H}, 10.57 \% \mathrm{~N}$. IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1724(\mathrm{C}=\mathrm{O}), 1960(\mathrm{~N}=\mathrm{C}=\mathrm{S}), 2120(\mathrm{C} \equiv \mathrm{C}), 4310(\equiv \mathrm{C}-\mathrm{H}),{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta$, ppm: $2.08\left(\mathrm{t}, 1 \mathrm{H}, J=3 \mathrm{~Hz}(\equiv \mathrm{CH}), 2.55\left(\mathrm{~m}, 2 \mathrm{H}, \equiv \mathrm{CCH}_{2}\right), 2.86(\mathrm{~m}\right.$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$).

2-(2-Propinyl)-4-pentinoyl isothiocyanate (VIII): yield 80%, b.p. $84-86^{\circ} \mathrm{C} / 0 \cdot 8 \mathrm{kPa}$. For $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NOS}(177.2)$ calculated: $61.00 \% \mathrm{C}, 3.98 \% \mathrm{H}, 7.90 \% \mathrm{~N}$; found: $59.77 \% \mathrm{C} .3 .92 \% \mathrm{H}, 8.06 \% \mathrm{~N}$. IR $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1720(\mathrm{C}=\mathrm{O}), 1955(\mathrm{~N}=\mathrm{C}=\mathrm{S}), 2120(\mathrm{C} \equiv \mathrm{C}), 3310(\equiv \mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta, \mathrm{p} \quad \mathrm{m}: 2.08(\mathrm{t}, 2 \mathrm{H}, J=3 \mathrm{~Hz} \equiv \mathrm{CH}), 2.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 2.88$ (m, $1 \mathrm{H}, \mathrm{CH}$).

Reaction of 4-Pentinoyl Isothiocyanate (VII) with Benzylamine

Benzylamine ($3.64 \mathrm{~g}, 34 \mathrm{mmol}$) was dropwise added to a stirred solution of isothiocyanate VII $(2.36 \mathrm{~g}, 17 \mathrm{mmol})$ in benzene $(40 \mathrm{ml})$ at an ambient temperature during 5 min . Stirring was continued for 2 h , the separated precipitate $X X V$ was allowed to stand for 1 h , filtered off, washed with benzene (5 ml) and the filtrate was evaporated. The residue was chromatographed through a silica gel column ($300 \mathrm{~g}, 100-250 \mu \mathrm{~m}$, benzene-acetone $7: 1$) to give compounds $I X$ and $X I X$.

N -Benzyl- N^{\prime}-(4-pentinoyl)thiourea (IX): IR $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1520(\mathrm{NHCS}), 1700(\mathrm{C=}=\mathrm{O})$. $2120(\mathrm{C}=\mathrm{C}), 3310(\equiv \mathrm{C}-\mathrm{H}), 3400(\mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right)$, δ, ppm: $2 \cdot 03(\mathrm{t}$, $1 \mathrm{H}, J-3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.80\left(\mathrm{~d}, 2 \mathrm{H}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 7.30(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$) $9.54(\mathrm{~s}, 1 \mathrm{H}), 10.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

4-Pentinoic acid N -benzylamide (XIX): IR spectrum $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}: 1670(\mathrm{C}==\mathrm{O}), 2119\right.$ $(\mathrm{C} \equiv \mathrm{C}), 3310(\equiv \mathrm{C}-\mathrm{H}), 3440(\mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta$, ppm: $1.94(\mathrm{t}, 1 \mathrm{H}$, $J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.54\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.38\left(\mathrm{~d}, 2 \mathrm{H}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 6 \cdot 19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $7.25\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$).

Benzylammonium thiocyanate (XXV): IR spectrum, (KBr), $\mathrm{cm}^{-1}: 2040(\mathrm{~S}-\mathrm{C} \equiv \mathrm{N}), 2570$ (+)
(N — H).

Reaction of 4-Pentinoyl Isothiocyanate (VII) with Aniline
Following compounds were obtained by an analogous procedure and reaction time 1.5 h :
N -Phenyl- N^{\prime}-(4-Pentinoyl)thiourea (X): IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1505$ (NHCS), 1690 $(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C} \equiv \mathrm{C}), 3180(\mathrm{~N}-\mathrm{H}), 3310(\equiv \mathrm{C}-\mathrm{H}), 3405(\mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum
$\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta$, ppm: $2.03(\mathrm{t}, 1 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 7.75 (s, $1 \mathrm{H}, \mathrm{NH}$).

4-Pentinoic acid anilide (XX): IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1650(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C} \equiv \mathrm{C})$, $3315(\equiv \mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta$, ppm: $2.03(\mathrm{t}, 1 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.56(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

Anilinium thiocyanate (XXVI): IR spsctrum (KBr), $\mathrm{cm}^{-1}: 2040(\mathrm{~S}-\mathrm{C} \equiv \mathrm{N}), 2560(+)$
$\mathrm{N}, \mathrm{N},-$ Diphenyl-N'-(4-pentinoyl)thiourea (XI)
A solution of diphenylamine $(6.2 \mathrm{~g}, 36 \mathrm{mmol})$ in benzene $(10 \mathrm{ml})$ was dropwise added during 5 min to a stirred solution of 4-pentinoyl isothiocyanate (VII) $(2.55 \mathrm{~g}, 18 \mathrm{mmol})$ in benzene $(40 \mathrm{ml})$ and the mixture was left to stand for 24 h . Hexane was added till turbidity was formed, the precipitate was filtered off, washed with hexane, dried and crystallized. IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1480$ (NHCS), $1705(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C} \equiv \mathrm{C}), 3310(\equiv \mathrm{C}-\mathrm{H}), 3390(\mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta$, ppm: $1.93(\mathrm{t}, 1 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2 \cdot 33\left(\mathrm{~m}, 2 \mathrm{H}, \equiv \mathrm{CCH}_{2}\right), 2 \cdot 60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{CO}\right)$, $7.33\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 8 \cdot 70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

Reaction of 4-Pentinoyl Isothiocyanate (VII) with Piperidine
Applying the same procedure as described with benzylamine, compounds $X I I, X X I$, and $X X V I I$ were obtained employing 20 min reaction time. Compound $X X I$ was also obtained by an independent synthesis: piperidine (4.3 mmol) and triethylamine (5 mmol) in benzene (5 ml) were added to a stirred and water-cooled solution of 4-pentinoyl chloride $(V)(0.5 \mathrm{~g}, 4.3 \mathrm{mmol})$ in benzene within 5 min . The mixture was stirred for 1 h at room temperature, the separated precipitate of triethylammonium chloride was filtered off, the solvent was evaporated and the residue was crystallized to furnish amide $X X I(75 \%)$.

1-(N -(4-Pentimoyl)thiocarbamoyl)piperidine (XII): IR spectrum (CHCl_{3}), $\mathrm{cm}^{-1}: 1525$ (NHCS), $1708(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C} \equiv \mathrm{C}), 3304(\equiv \mathrm{C}-\mathrm{H}), 3390 \mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta$, ppm: $1.70\left(\mathrm{~m}, 6 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right), 1.96(\mathrm{t}, 1 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .3 .80(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}$), $8.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

1-(4-Pentinoyl)piperidine (XXI): IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1630(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C}=\mathrm{C}$), $3305(\equiv \mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta$, ppm: $1.62\left(\mathrm{~m}, 6 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right), 1 \cdot 95(\mathrm{t}, 1 \mathrm{H}$, $J=3 \mathrm{~Hz},=\mathrm{CH}), 2.54\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right)$.

Piperidinium thiocyanate (XXVII): IR spectrum (KBr), $\mathrm{cm}^{-1}: 2035(\mathrm{~S}-\mathrm{C} \equiv \mathrm{N}), 2560\left(\mathrm{~N}^{(+)}\right.$_-$-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left({ }^{2} \mathrm{H}_{2} \mathrm{O}\right), \delta$, ppm: $1.98\left(\mathrm{~m}, 6 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right), 3.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{(+)} \mathrm{CH}_{2}\right)$.

Reaction of 4-Pentinoyl Isothiocyanate (VII) with Morpholine
The same procedure as with benzylamine was applied to get compounds $X I I I, X X I I$, and $X X V I I I$; compound $X X I I$ was also synthesized by an independent procedure as $X X I$ in 80% yield.

4-(N -(4-Pentinoyl)thiocarbamoyl)morpholine (XIII): IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1525$ (NHCS), $1690(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C} \equiv \mathrm{C}), 2305(\equiv \mathrm{C}-\mathrm{H}), 3395(\mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}-\left(\mathrm{C}^{2} \mathrm{H}_{3}\right)_{2} \mathrm{SO}, 1: 1\right), \delta, \mathrm{ppm}: 2.04(\mathrm{t}, 1 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.53\left(\mathrm{~m}, 4 \mathrm{H},\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)\right.$, $\left.3.00 \mathrm{~m}, 8 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right)$.

4-(4-Pentinoyl)morpholine (XXII): IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1640(\mathrm{C}=\mathrm{O}), 2225(\mathrm{C} \equiv \mathrm{C})$, $3312(\equiv \mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HC}_{3}\right), \delta, \operatorname{ppm}: 1.99(\mathrm{t}, 1 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.58$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3 \cdot 60\left(\mathrm{~m}, 8 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right)$.

Morpholinium thiocyanate (XXVIII): IR spectrum (KBr), $\mathrm{cm}^{-1}: 2170(\mathrm{~S}-\mathrm{C} \equiv \mathrm{N}), 2520$ $\left(\mathrm{N}^{(+)}-\mathrm{H}\right) .{ }^{1} \mathrm{H}$ NMR spectrum $\left({ }^{2} \mathrm{H}_{2} \mathrm{O}\right)$, δ, ppm: $3.66\left(\mathrm{~m} 4 \mathrm{H} \mathrm{CH}_{2} \mathrm{~N}^{(+)} \mathrm{CH}_{2}\right), 4.25(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$).

Reaction of 2-(2-Propinyl)-4-pentinoyl Isothiocyanate (VIII) with Benzylamine
Benzylamine ($3 \mathrm{~g}, 28 \mathrm{mmol}$) was added within 5 min to a stirred solution of isothiocyanate VIII ($2.4 \mathrm{~g}, 14 \mathrm{mmol}$) in benzene at an ambient temperature. The mixture was stired for 1 h , the precipitated $X X V$ was filtered off and washed with benzene (5 ml). Addition of hexane (30 ml) to the filtrate resulted in precipitation of $X X I I I$, which was filtered off and washed with hexane. The filtrate was evaporated and the residue was crystallized from hexane to give $X I V$.

N -Benzy/- N^{\prime}-(2-(2-propinyl)-4-pentinoyl)thiourea (XIV): IR spectrum $\left(\mathrm{CHCi}_{3}\right), \mathrm{cm}^{-1}: 1520$ (NHCS), $1695(\mathrm{C}=\mathrm{O}), 2125(\mathrm{C} \equiv \mathrm{C}), 3312(\equiv \mathrm{C}-\mathrm{H}), 3408(\mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta, \mathrm{ppm}: 2.13(\mathrm{t}, 2 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 2.85(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 4.85\left(\mathrm{~d}, 2 \mathrm{H}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 7.35\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 9.75(\mathrm{~s}, 1 \mathrm{H}), 10.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

2-(2-Propinyl)-4-pentinoic acid N -benzylamide (XXII): IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1670$ $(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C} \equiv \mathrm{C}), 3305(\equiv \mathrm{C}-\mathrm{H}), 3335 \mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta$, ppm: $2.03(\mathrm{t}, 2 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 2.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.45(\mathrm{~d}, 2 \mathrm{H}$, $\left.J=5 \mathrm{~Hz}, \mathbf{C H}_{2} \mathrm{NH}\right), 6.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.30\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

Reaction of 2-(2-Propinyl)-4-pentinoyl Isothiocyanate (VIII) with Aniline
Reaction time 75 min and procedure as in the preceding case afforded from VIII and aniline a precipitate consisting of $X V$ and $X X V I$. Washing with benzene removes thiourea $X V$. The filtrate was combined with that of the reaction mixture containing $X V$ and $X X I V$. The solvent was evaporated and the residue was chromatographed over a silica gel ($200 \mathrm{~g}, 40-100 \mu \mathrm{~m}$, benzene--acetone $7: 1$) column affording $X V$ and $X X I V$.

N -Phenyl- N^{\prime}-(2-(2-propinyl)-4-pentinoyl)thiourea (XV): IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1520$ (NHCS), $1680(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C} \equiv \mathrm{C}), 3130(\mathrm{~N}-\mathrm{H}), 3302(\equiv \mathrm{C}-\mathrm{H}), 3395(\mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}-\left(\mathrm{C}^{2} \mathrm{H}_{3}\right)_{2} \mathrm{SO}, 1: 1\right), \delta, \mathrm{ppm}: 2 \cdot 13(\mathrm{t}, 2 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2 \cdot 60(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CHCH}_{2}$), $3.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.45\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 10.95(\mathrm{~s}, 1 \mathrm{H}), 12.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

2-(2-Propinyl)-4-pentinoic acid anilide (XXIV): IR spectrum (CHCl_{3}), $\mathrm{cm}^{-1}: 1690(\mathrm{C}=\mathrm{O})$. $2125(\mathrm{C}=\mathrm{C}), 3315(\equiv \mathrm{C}-\mathrm{H}), 3430(\mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}-\left(\mathrm{C}^{2} \mathrm{H}_{3}\right) \mathrm{SO}, 1: 1\right)$, δ, ppm: $2.10(\mathrm{t}, 2 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.58\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 2.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.25$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$), $9.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
N, N-Diphenyl- N^{\prime}-(2-(2-propinyl)-4-pentinoyl)thiourea (XVI)
Diphenylamine ($4.8 \mathrm{~g}, 28 \mathrm{mmol}$) in benzene (20 ml) was added to a stirred solution of the isothiocyanate VIII ($2.4 \mathrm{~g}, 14 \mathrm{mmol}$) in benzene (20 ml) at room temperature. The mixture was allowed to stand for 24 h , hexane was added till no more turbidity was formed, the crystalline precipitate was filtered off, washed with hexane and dried. IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1480$ (NHCS), $1720(\mathrm{C}=\mathrm{O}), 2125(\mathrm{C} \equiv \mathrm{C}), 3310(\equiv \mathrm{C}-\mathrm{H}), 3385(\mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta$, ppm: $2.00(\mathrm{t}, 2 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CHCH}_{2}\right), 2.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.29(\mathrm{~m}$, $\left.10 \mathrm{H}, \mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right), 8.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

1-(N-(2-(2-Propinyl)-4-pentinoyl)thiocarbamoyl)piperidine (XVII)
The same procedure as with the rreceding case and reaction time 20 min was applied for the pre-
paration of XVII. IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1530(\mathrm{NHCS}), 1705(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C} \equiv \mathrm{C})$. $3305(\equiv \mathrm{C}-\mathrm{H}), 2285(\mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta$, ppm: $1.69\left(\mathrm{~m}, 6 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right)$, $2.05(\mathrm{t}, 2 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.63\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 3.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right)$.

4-(N-(2-(2-Propinyl)-4-pentinoyl)thiocarbamoyl)morpholine (XVIII)
The product was obtained by the same procedure from the isothiocyanate VIII and morpholine. IR spectrum (CHCl_{3}), $\mathrm{cm}^{-1}: 1523(\mathrm{NHCS}), 1705(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C} \equiv \mathrm{C}), 3305(\equiv \mathrm{C}-\mathrm{H})$, $3380(\mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta, \mathrm{ppm}: 2.08(\mathrm{t}, 2 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.58(\mathrm{~m}$, $\left.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 3 \cdot 80\left(\mathrm{~m}, 8 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right)$.

O-Methyl N-(4-Pentinoyl)monothiocarbamate ($X X I X$)

4-Pentinoyl isothiocyanate ($1.4 \mathrm{~g}, 17 \mathrm{mmol}$) dissolved in methanol (30 ml) was left to stand at room temperature for 45 min , methanol was evaporated and the residue was crystallized from cyclohexane. Yield 78%, m.p. $81 \cdot 5-83^{\circ} \mathrm{C}$. For $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~S}(171 \cdot 3)$ calculated: $49 \cdot 11 \% \mathrm{C}, 5 \cdot 29 \% \mathrm{H}$, $8.18 \% \mathrm{~N}$; found: $48.80 \% \mathrm{C}, 5.55 \% \mathrm{H}, 7.94 \% \mathrm{~N}$. IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1495$ (NHCS), $1700(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C} \equiv \mathrm{C}), 3305(\equiv \mathrm{C}-\mathrm{H}), 3380(\mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum $\left(\mathrm{C}^{2} \mathrm{HC}^{1}{ }_{3}\right), \delta$, ppm: $2.00(\mathrm{t}, 1 \mathrm{H}, J=3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.58\left(\mathrm{~m} .2 \mathrm{H}, \equiv \mathrm{CCH}_{2}\right), 2.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 4.13(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), $9 \cdot 20$ (s, $1 \mathrm{H}, \mathrm{NH}$).

O-Methyl N -(2-(2-Propinyl)-4-pentinoyl)monothiocarbamate ($X X X$)
Treatment of isothiocyanate VIII with methanol yielded $X X X$ by the same procedure as given for $X X I X$. Yield 85%, m.p. $108-109^{\circ} \mathrm{C}$. For $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}$ (209.3). Calculated: $57.39 \% \mathrm{C}$, $5 \cdot 30 \% \mathrm{H}, 6 \cdot 70 \% \mathrm{~N}$; found: $57 \cdot 16 \% \mathrm{C}, 5.47 \% \mathrm{H}, 6.48 \% \mathrm{~N}$. IR spectrum $\left(\mathrm{CHCl}_{3}\right), \mathrm{cm}^{-1}: 1505$ (NHCS), $1730(\mathrm{C}=\mathrm{O}), 2120(\mathrm{C} \equiv \mathrm{C}), 3312(\equiv \mathrm{C}-\mathrm{H}), 3400(\mathrm{~N}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right), \delta$, ppm: $2.20(\mathrm{t}, 2 \mathrm{H}, J==3 \mathrm{~Hz}, \equiv \mathrm{CH}), 2.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CHCH}_{2}\right), 2.90(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}), 4 \cdot 13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 9.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

REFERENCES

1. Sarkis G. Y., Faisal E. D.: J. Heterocycl. Chem. 22, 137 (1984).
2. Griffin T. S., Woods T. S., Klayman D. L.: Adv. Heterocycl. Chem. 18, 99 (1975).
3. Kutschy P., Dzurilla M., Kristian P., Kutschyová K.: This Journal 46, 436 (1981).
4. Kutschy P., Imrich J., Bernát J.: Synthesis 1983, 929.
5. Dzurilla M., Kutschy P., Kristian P.: Synthesis 1985, 933.
6. Imrich J., Kristian P., Podhradský D., Dzurilla M.: This Journal 45, 2334 (1980).
7. Kutschy P., Imrich J., Bernát J., Kristian P., Fedoriková I.: This Journal 51, 2002 (1986).
8. Koščik D., Kristian P., Gonda J., Dandárová E.: This Journal 48, 3315 (1983).
9. Kristian P., Kutschy P., Dzurilla M.: This Journal 44, 1324 (1979).
10. Imrich J., Kristian P.: This Journal 47, 3268 (1982).
11. Migalina J. V., Staniets J. V., Smolanka I. V.: Ukr. Khim. Zh. 35, 526 (1969).
12. Kutschy P., Dzurilla M., Kniežo L., Bernát J., Imrich J., Kristian P., Nádaskay R.: This Journal 51, 1119 (1986).
13. Takamizava A., Hirai K., Matsui K.: Bull. Chem. Soc. Jpn. 36, 1214 (1963).
14. Capuano L., Schrepfer H. J.: Chem. Ber. 104, 3039 (1971).
15. Schrepfer H. J., Capuano L., Schmidt H. L.: Chem. Ber. 106, 2925 (1973).
16. Tsuge O. in the book: The Chemistry of Cyanates and their Thio Derivatives (S. Patai, Ed.), Part 1, Chap. 13. Wiley-Interscience, Chichester 1977.
17. Elmore D. T., Ogle J. R.: J. Chem. Soc. 1958, 1141.
18. Kutschy P., Kristian P., Dzurilla M., Koščik D., Nádsakay R.: Chem. Papers, in press.
19. Schulte K. F.., Reiss K. D.: Chem. Ber. 87, 964 (1954).
20. Colonge J., Gelin R.: Bull. Soc. Chim. Fr. 1954, 797.
21. Gaudemar M.: C. R. Acad. Sci. 237, 71 (1953).
22. Schulte K. E., Jantos N.: Arch. Pharm. 292, 432 (1952).

Translated by 7. Votický.

